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preliminary design, where the basic structural configurations
will be established.

Sandwich structures, of which the truss-core sandwich has
been selected as representative, are shown to be very effi-
cient load-carrying members for all loading-component com-
binations treated in this article, except as wide columns—
particularly at low to moderate values of the various loading
indexes.

Cross-rolled beryllium sheet is the most efficient material
for all configuration-loading-component combinations in-
vestigated, when elastically stressed in the lower temperature
range. In applications involving plastic stresses, beryllium
is competitive with the so-called high-strength materials.

- The validity of small-deflection theory for predicting the
behavior of axially compressed, long, truss-core sandwich
circular cylindrical shells has been verified for a portion of
the practical design range by some independently conducted
tests. Further experimental verification of the theoretical
minimum weight analyses presented here is required, par-
ticularly for structures such as the axially compressed
cylinder, where controversy exists over the proper theory for
predicting their buckling behavior. Minimum weight studies
of other stiffened structural components, such as conical
shells and spherical caps, are needed. In addition, the
minimum weight of structures under combined loading is of
interest and should be determined.
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Conical Segment Method for Analyzing Open Crown Shells of

Revolution for Edge Loading

RoseErT R. MEYER* AND MaRILYN B. Harmont
Douglas Azrcraft Company Inc., Santa Monica, Calif.

A solution, accurate, rapid, simple enough for design use, and valid for all regions, has been
obtained for the stress distribution and influence coefficients for a variable thickness shell of
revolution formed by a generator of arbitrary shape. The shell is subdivided into a series of
equivalent conical segments whose individual thicknesses are the local segment average. Con-
ditions of continuity then are dapplied at the boundaries of each conical segment to evaluate
the indeterminate edge shears and moments using digital equipment. Influence coefficient
comparisons for a wide range of shell geometries are made between the cone solution and

solutions by other methods from the literature and show agreement within 49%. The cone
solution reciprocity relations are shown to be valid to five significant figures. Limiting con-
ditions indicate that good approximations of the influence coefficients and the stresses can be

obtained by using 10 cones in most cases.

Nomenclature
E = modulus of elasticity
» = Poisson’s ratio
t = thickness
Az = altitude of a truncated conical segment,
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R = radius of curvature of the median surface of the cone
measured in the truncating plane
angle between the axis of revolution and the generatrix of

o =
the conical segment

X; = load or moment applied to an edge of a conical segment,

8;x = deflection at 7 in the direction of load X ; due to a unit load
at k (displacement or rotation), influence coefficient

a = distance from the shell axis of rotation to the center of the
radius of curvature for a toroidal shell

b = maximum shell cross-section dimension, i.e., toroidal
radius or major axis of an ellipse

Q¢ = shear force on the meridian plane

N; = normal force on the meridian plane

M = bending moment on the meridian plane
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Ny = normal force on the plane perpendicular to the meridian
plane (hoop)
Mgs = bending moment on the plane perpendicular to the merid-
ian plane (hoop)
Introduction

OR many years investigators have directed their activities

toward solving the shell equations to obtain the edge solu-
tions for various shells of revolution. 7% Limiting sequences
used to obtain a solution can be defined in a variety of ways.
The sequence may be defined, for example, by a series, by a fi-
nite difference mesh, or by a numerical integration interval
where the mesh or interval subdivision defines the sequence.
In this paper, the sequence is defined by a cone subdivision.
The rapidity of approach to a limit in any case will depend
upon in which stage of the analysis the sequence is defined.
It is believed that the rapidity of the approach to a limit of the
conical solution presented here lies basically in the fact that
the sequence is defined at a later stage in the analysis than for
a finite difference grid or numerical integration interval where
magnification of the sensitivity to the interval may appear in
tl econvergerce of the final results.

The solution for any number of cones as proposed here can
be programmed for a digital computer. A simple input of
geometry and loading quickly will yield the deflection in-
fluence coefficient matrix and bending stress distribution for
use in thin shell design. The shell of revolution, formed by a
generator of arbitrary shape, can have any meridional thick-
ness variation, and it is possible to take into account a change
of material or material properties as the shell is traversed from
erown to base.

The original shell is considered to be a limiting sequence of
circular conical shell frustums that, when assembled together
‘with conditions of continuity satisfied, closely resemble the
original shell (Fig. 1). Tach conical segment has constant
material properties and thickness, the average of the material
properties and the thickness variation in the original shell
region represented by that conical segment. Many short
cones are cut in regions of rapidly changing geometry or
material properties, whereas in less disturbed regions a few
cones will yield a satisfactory solution. The individual cone
solution is shown to be rigorously valid for all ranges of
opening angle from a cylinder to a flat plate (Appendix A).

Deflection Influence Coefficients

A comparison of the cone solution deflection influence co-
efficients with the deflection coefficients for toroids, ellipsoids,
and shells of negative curvature, derived by other methods,3—3
shows a maximum of 49, difference for the three numerical
examples given (Tables 1-3). This percentage range generally
held for other numerical examples compared with the fore-
mentioned literature sources.

Using the reciprocity relations [Appendix A, Eq. (A10)],
the check matrix 8, (t,k = 1, 2, 8, 4) for 15 cones and E =
10 X 108 for the toroidal example yields the following values:

+0.0008396331.6 ~—0.00044246235
—0.00044246309 +0.0011778462
—0.000082054413 +0.000081082908
—0.000067329702 +0.00010251960

Similar matrix reciprocity checks for other numerical ex-
amples using the cone solution exhibit five digit accuracies
comparable to those shown here (i.e., §;; compared to 8,;, ete.,
in the foregoing). The authors are not aware of any other
methods exhibiting comparable accuracies in the reciprocity
relations.

It is of interest to investigate the manner in which the de-
flection influence coeflicients approach a limit as the number
of cones is increased. The main diagonal terms for the toroi-
dal example?® are shown in Fig. 2. The rapid approach of the
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Fig. 1 A toroidal shell illustrating the use of the cone
approximation

coefficients to limiting values suitable for design is typiecal for
the various shell geometries analyzed.

Stress Distributions

Comparison data for bending stress distributions of unpres-
surized shells were unavailable in the unclassified literature.t
It is of interest to note, however, the effect of the number of
cones used to approximate the shell upon the convergence of
the stress values to a limiting case resulting from a fine lumping
of cones. An example of an ellipsoidal shell using 20 cones as
the limiting case is shown in Fig. 3, which was typical of
comparisons made for other shell geometries.

1.010 =

n 3
Sik=8;k*8;
iK iK iK 20 CONES
1.008 \
1.006 \
1.004 \
§ik 1.002 N
1.000 -
/_—%—_'
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Fig. 2 The variation of the influence coefficient (nor-
malized to the 20-cone solution) for the toroidal shell?
example

—0.000082054375
-+0.000081083109
+0.000013781843
-+0.0000075269255

—0.000067329376
+0.00010251973
+0.0000075268471
+0.000013740710

Conclusions

Stress analysts have needed a rapid method of obtaining
good approximations of the influence coefficients and bending
stress distributions for edge-loaded shells for which exact
solutions are not available. The cone solution presented here,
using a computer such as the IBM 7090, quickly will yield in-

1 See Appendix B.
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fluence coefficients and stresses for any thin shell of revolution
within design accuracy. The limiting cases of any governing
equations are the flat plate and the cylinder, thus permitting
the analysis of a wide range of shell geometries. Variable
thickness and variations of material can be included in the
analysis.

Appendix A
Individual Cone: Derivation
The cone problem consists of solving a fourth-order dif-
ferential equation with four constants of integration for each
of the four different boundary conditions. Splitting the

fourth-order equation into a pair of second-order equations
(1), one obtains, using the notation defined by Fig. 1,

L.(sQs) £ iN%sQ, = 0 (A1)
where

@e(---) d(--) (-

ds? ds S

Using the transformation n = x(2)12 = 2\(2)Y2-(s)'/?, the
solution of the cone problem then depends upon the solution
of

L, =s

Q) | 1 dsQ)
dn? n  dy

This solution is given by?!

sQ, = Cilber x — (2/x)bei’ x] + Cylber x + (2/x)ber’ z] +
Cslker v — (2/x)ker’ z] + Culkel x + (2/2)ker’ z] (A2)

where

+ (1 +§,> (sQ) = 0

E = modulus of elasticity
v = Poisson’s ratio

M o= [12(1 — »?) /2] cot’e
x = 2\(s)l2

All the other desired quantities, M, N, and §, depend upon
various linear combinations of Eq. (2) and its derivatives, i.e.,
a suitable combination of the constants of integration. A
double subscript notation is adopted for the constants of
integration C,: such that the first subseript p indicates a con-
stant of integration number p = 1, 2, 3, 4; and the second
subseript k, where k = 1, 2, 3, 4, corresponds to the subseript
of one of the unit edge loads, X; = 1, to identify the loading
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Fig. 3 Typical hoop load per inch distribution showing
the effect of the number of approximating cones
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condition. To simplify the solution, the following combina-
tions of Kelvin functions will be defined:

A1, = ber z — (2/x)ber’ x
Bi. =z bei’ x — 2(1 — v)[bet z + (2/2)ber’ ]
Agr = bet z + (2/x)ber’ x

—Bs, =z ber’ z — 2(1 — v)[ber & — (2/x)bei’ z] A
Az, = ker x — (2/x)kei’ x (A3)
By, =z ket’ x — 2(1 — v)[ket x + (2/x)ker’ z]
Ase = ket x + (2/x)ker’ x

—Bi, =z ker’ x — 2(1 — v)[ker v — (2/x)kei’ x]

The solution for the shear resultant @, then can be represented
by

$Qs = Cigdic + Coxdar + Cixdse + Cixds, (A4)

Similarly, the solution for the meridian moment resultant is
given by

2?M,/2 = CigBiz + CoxBis: + CsgBs. + CixBi: (A5)

The boundary conditions are

K=1 X1=1=QS Xo=Xs3=X,=0
cosa

- I _x, -

K—-2 Xz—l—_ Xl—X3—-X4=0
cosS

K =3 Xs=1=~M, Xi=X;=X,=0

K =4 Xo=1=M, Xi=X,=X3=0

If the values of 4., Bp. at x = 1, 22 are denoted by 4,1, 4,2
and B,1, By, the boundary conditions may be represented by
the following matrix:

A~11 A21 A31 A41 Cv11 012 013 014
A 12 A22 A32 A 2 CZI 022 C'23 024
Bll B21 B31 B41 031 C32 033 034
Bl2 B22 B32 B42 LC41 042 043 044

>

S cosa 0 0 0
0 —8, cosa 0 0
0 0 —@y2 o |40
0 0 0 z9%/2

In terms of the functions

Dy, = ber & + (2/x)ber’ x

E.. = —xber’ x + 2(1 + v)ber z — (4/2)(1 + »)ber’ =
—Dy, = berz — (2/x)bei’

By = —zbet’ z + 2(1 + v)bei © + (4/2)(1 + »)ber’

Dy, = ket x + (2/x) ker’ x

By = —zxker’ x + 2001 + vker 2 — (4/2)(1 + v)ker’ x
~Dy, = kerz — (2/x)ker’

—zxket’ x + 2(1 + ket x + @/x)Q + vker’ x
(AT)

The angle change of the tangents at the points of application
and in the directions of X5 and X, due to unit load at X are
given by

K\283,40 = CiiDye + CorDyx + CatDse + CuDi  (AS)
where
K = Et3/12(1 — »?)

while the horizontal displacement of the cone boundary edges
at and in the direction of loads X, and X, due to unit load at
X are given by Hooke’s law for middle surface deformation:

Bi0r = (s sina/Et)(Ng — »Ng) (A9)

or »
2E16; 0/sine tana = CuFyy + Caulles + Cokls, + Culls
As a check on the computation of Eqs. (8) and (9), Betti’s
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Table 1 Influence coefficients: a comparison of the cone solution with Galletly’s? and Clark’s? solutions for a toroid with
positive curvature with constant thickness (a = 230 in., b = 34.625 in., t = 1.25 in.)

Edge loading 8 Galletly Clark 4 cones 15 cones
Unit moment at g = 73° Es,, 73° 1007.0 990.0 971.49 975.80
Edyy 36°10’ —695.7 —680.0 —675.70 —673.29

Unit inward horizontal force at g8 =73° Esdy, 73° +11545.0 +11400.0 +11155.6 +11210.9
Esy, 36°10’ —4554.0 —4375.0 —4446.8 —4424 6
Unit moment at 8 = 36°10’ Kby 73° +792.4 +776.0 +767.88 +-771.76
Esy; 36°10' —834.3 —820.0 —826.24 —820.54

Unit outward horizontal force at 8 = 36°10°  Eby 73° —4343.0 —4180.0 —4232.6 —4211.4
Eby 36°107 8657.0 8530.0 8477.2 8396.3

Unit moment at § = 73° Eby 73° +134.2 +132.5 +130.6 +130.8
Esy, 36°107 +77.99 +76.2 +74.94 +75.27
Unit inward horizontal force at 8 = 73° Eéy 73° 1007.0 987.0 971.49 975.80
Es3, 36°10’ 830.1 811.0 806.75 810.83
Unit moment at § = 36°10’ Es; 73° 73.95 72.6 71.33 71.64
Ess; 36°10’ 138.7 137.6 137.5 137.8

Unit outward horizontal force at 8 = 36°10’ K5y 73° —664.0 —646.0 —643.14 —640.9
Esy 36°10° —834.5 —818.0 —826.24 —820.54

Table 2 Influence coefficients: a comparison of the cone solution with Galletly’s? solution for a shell of negative Gaussian
curvature with constant thickness (b/t = 10, a/b = 7)

Edge loading 8 Galletly 5 cones Galletly 5 cones
bX: =1 Eb2y —2556.5 —2585.5 Ebsn 1474 .4 1480.3
X; =1 Eb25 7747 .5 7825.8 Ebdi3 —2556.5 —2585.5

—bX, =1 B8 = 90° Eb%;, 1271.8 1301.6 Ebsy2 —471.72 —481.25
—X, =1 Eb2s4 2140.8 2138.4 Ebdys —1651.4 —1634.8
bX, =1 Eb%y; —1469.9 —1455.0 Ebéa —419.87 —428 .34
X; =1 By = 15° Eb%y 1905.4 1903 .2 Ebdyg 1132.0 1158.5

—bX; =1 Eb2%,, 2084.5 2083 .2 Ebégs 1011.6 1042.9
—-X, =1 Eb%y, 9977.0 9691 .2 Ebéy 2084.5 2083 .2

Table 3 Influence coefficients: a comparison of the cone solution with Galletly’s® solution of an ellipsoidal shell with
constant thickness (b/t = 100, b/z = 2)

Edge loading B Galletly 5 cones Galletly 5 cones
—Xo/t =1 Esys 334.34 333.37 E /t829 +2580.8 +2576.55
Xy /t2 =1 Ebdy +85.349 +85.228 E [t894 334.37 333.38
X/t =1 B = 90° Ebsy +4.9803 +4.9817 E /51 25.043 25.467
—X,/t2 =1 By —0.68714 ~—0.68714 E /tdos —7.8585 —7.8737
—Xo/t =1 sy —10.420 —10.416 E/té:s +33.181 +33.691
X /12 =1 Esy, —0.91900 —0.90903 E /814 6.6024 6.5904
X]/t = 1 ﬂg = 30G E531 —23846 —24623 E/mu 12321 12542
X3/ =1 Edy; 99.879 101.115 E /ts:; —238.46 —246.23
reciprocal deflection theorem extended to line loads may be tions for the stress resultants at point z are given by super-
represented in the form? position:
iaic = CrOk; 4
Ci0it ci0y (A10) N, = — tﬂu_x Z Z Cod,,
where ¢; is the circumference at the X; load, and 6. is the 8 i= p=1
deformation at %, at and in the direction of X; = 1, due to a tana A
unit load at k, i.e., X = 1. For the case eonsidered, ¢; = ¢; Ny = — — z Z ol
= srand ¢y = ¢4 = $, since the circumference is proportional S k=1 p=1
to the slant height. 9 4 4 (A13)
To complete the solution, the following quantities are de- M, = — z 2 CoiB,.
fined in terms of the Kelvin functions: o= =
Fi, = xber’x — 2ber x + (4/x)bei’ x 2 < :
Foo = xbet’ v — 2bei v — (4/x)ber’ x (A1D) My = 22 ;Z: Z:: CpiGpe
Fs, = zher' v — 2kerz + (4/x)ket’ o
Fow = akei’x — 2kel 2 — (4/2)ker’ 2 The values of stress resultants may be computed by means of
Eq. (13) for different values of z along the shell and must
and satisfy the end conditions at the boundaries.
G = zbei’ z + 2(1 — »)[bei x + (2/x)ber’ ) ' The metbod of coupling a series of cones togefcher. is shown
Gy = xber’ 3+ 201 — v)[ber z — (2/2)bes” ] in Appendm B. The ex'tent'of the general application of the
2
G.. — / _ / (A12) conical-segment approximation to shells ean be seen by ex-
5 = v het’ x + 201 — v) ket z + (2/x)ker’ 2] i L . .
—Gio = zher' T 4+ 200 — ) [ker = — (2/D)kei’ 2] amining the limiting cases of the cone equation, which are

those for a flat plate with a hole in the center for one limit and
When the X loads are unity or a given value, the final solu- that for a eylinder for the other limit.”
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Table 4 Stress influence coefficients: a comparison of the conical segment method solution with Galletly’s solution®
for a torus

$ = 90° ¢ = 75° ¢ = 60° ¢ = 45° ¢ = 30°
Mo bNe Mé bNe M bNe Mo bN@ Mo bNe6

Galletly’s solution

bH; = 1 A 23.073 —0.03806 0.39219 —0.00218 —1.14090 0.00124 —0.13672 Ce 0.22840

M, =1 1.0 —132.75 0.23789 26.705 —0.03541 8.0948 —0.01414 —0.69190 —1.6827

bHy = 1 e —0.35630 —0.00191 0.49205 0.01227 1.5166 0.04760 —3.5544 . —18.228

M, =1 —3.0529 —0.03837  0.86552 —0.00148 21.518 0.50433 21.010 1.0 —212.01
Conical segment method solution

bH: = 1 c. 23.2066 —0.037487 0.32292 -—0.002053 —1.1327 0.001233 —0.13103 R 0.22614

M, =1 1.0 -—134.974 0.23409 26.8922 —0.035588 8.0657 —0.013946 —0.71385 e —1.6670

bH, = 1 Ces —0.35335 —0.00188 0.48810 0.012127 1.52663 0.047511 —3.5734 . —18.441

M, =1 —2.9335 —0.037430 0.80105 —0.00366 21.269 0.49490 21.5588 1.0 —199.546

Table 5 Stress influence coefficients: a comparison of the conical segment method of solution with Galletly’s solution!?
for an ellipsoid

6 = 90° b = 75° b = 60° b = 45° ¢ = 30°
Me/hr  Ne/h Mo /he No/h Mo /he N6/h Mo /h Né/h  Mge/h:  Nejh
Hi/h =1 . —36.426 —3.0488  —3.7877 —0.41829  2.2710  0.12705  0.13478 ...  0.00317
Ms/h? = 1 1.0 3.3236 0.38082 —0.56577 —0.02474 —0.33290 —0.01528  0.02589 ... —0.00764
Hy/h = 1 —0.000399 0.00898  0.05742 —0.07086 —0.05437  0.20106 —1.3283 ... 22.589
Ma/h? = 1 —0.00757 0.00065  0.01182 —0.01269  0.02752 —0.03005 —0.28805 1.0  3.1996

Galletly’s solution

Conical segment method solution

H;/h =1 0 —36.400 —3.0487 -—3.7591 —0.41599 2.2699 0.12618 0.13182 ... 0.000917
Ms/h? = 1 1.0 3.3197 0.38015 —0.5677 —0.02496 —0.3319 —0.01512 0.02593 .... —0.008053
Hy/h =1 0 —0.0009489 —0.008952 0.05828 —0.07183 —0.05318 0.20421 —1.3524 ... 22.926
My/h? = 1 —0.007618 0.000649 0.01196 —0.01287 0.02757 —0.02946 —0.2939 1.0 3.2865
Flat Plat ‘ d [dw | 1201 — »?
at Plate | 4[_4 4(“”@0]:0 (A19)
The form of Eq. (1) holds for a meridian angle change ¢,! de | dz o’
as well as for the shear force Qs; therefore, writing Eq. (1) in This is the equation of a cylinder.5
terms of ¢,
d2¢ = do ¢:| . coba . Appendix B
0= — 4+ — — < £ [12(1 — »y)]2—. Al4
(552 +52 -2 in20 -y (g
Coupling the Cones
For a flat plate, in the limit, o — /2, cota — 0, and s — 7, . . . .
the plate radius; the equation becomes »lh('a method of couphng the cones \Ylll be 1llustr§ted by
coupling the top cone j to the next cone j — 1 beneathit. For
r(d?¢/dr?) + (dé/dr) — (¢/r) = 0 (A15) continuity of the two cone segments, see Fig. 1 at the joint:
which is the plate equation for a plate with zero transverse SF =0 = Xo;,+ X (B1)
hear.® !
shear SH =0 = Xy + Xs, (B2)
Cylinder : ZAjumd i = 0 = Xy;0m, + X000, + Xi;00; + X4j00; —
The cylinder is the limiting case where the apex of the cone Xijubujm — Xojubrogy — Xajobiaj — Xo by (B3)

approaches infinity. Let S = S; + =, where S, the distance 30, 0na 0 = 0 = Xo0u; + Xobus, + Xobus; + Xabus; —
of the apex from the upper edge, — «, and z is the variable X b Xor Bsmr — Xso Bsss — XaiBoss (B4
dS = dz, and Eq. (14) becomes LT3l 282 Bim 08— T LA TR

a2 do é For the end cone, known external end loads are substituted

tana [(81 + ) + e F—] =+ into the equations such that X;; = M, and X,; = P;. The
de v 1t other cones are coupled in a similar manner, resulting in a

i [12(1 — »2)] 1 ¢ _ 0 (Al6) matrix equation from which the unknown edge loads X, and

t X, can be determined for each cone. Using the general rela-

v .. : tions derived from Eqs. (B1) and (B2), the unknown X;and X
In the limit as & — 0, tana — 0, but tane [(S; + 2)] — a, the loads can be evaluated from

cylindrical radius. Hence

a(d?¢p/dz?) £ 1[12(1 — v1)]V2(¢/8) = 0 (A17) Xojonse = = Xijnn Xijonse = —Xsjonss (BD)
This is equivalent to the single equation The matrix solution for X, and X, is of the form
ax(dt¢/dat) + 12(1 — v2)(¢/t2) = 0 (A18) [H]"[X54] = [X38]

Since ¢ = dw/dz, the meridian angle change, where for 2(7 — 1) terms
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™ — 81, 0 — a3; 0 —l P;
— 01, 0 — Oug; 0 P,
0 0 0 0 M;
(X351 = 0 0 0 0 M,
0 012)— 0 0147,
. 0 32i-n 0 0347 ]
and
A B W)
[H}’l — lC!l I‘l ll IB‘Q IJI
v ek 4k Bl
/1 4 B (& PO K
where
A - [(621’-)'—a + 511]-&—1)(624j-—a _'_ 613j—a~1):]
¢ (Oa2/—a 4 5170 1) (Ba4j_0 T B33j-0_,)
_ | 0. — 614j—aJ
,Bia [—532,‘% — O35
—0u1; g — Oa3;
O . = 21 -a 23]—a]
{ { [—541,"(; - 643j—a

= 0]

The matrix unknown X, and X, loads are evaluated for the
u_nit load case where the known shell end loads Xy;1, X1,
Xojpyy Xajouy, are equal to 1 or 0 each in turn. The form

of X,.41s therefore

I—X?fz X2f11 ‘Yzfm X21'1\ ]
X41!. X4f11 X4fm 3(47.1\
X2f"‘1 X2f“11 )(21"1111 ng*ll\
X‘*/“ X‘*?'—III ‘:)(41'"1111 X4J”‘1V
[X24] = . . .
X-z, —nly ij_”*"n Xzf’“Hm ‘Y%“" Hiy
_X4"'“”+‘1 X4f—"+111 ‘Y4f—"+1111 S djerapy

from which the unknown X, and X, and, therefore, X; and X
loads can be found for each cone. Using these evaluated
loads, the stress distribution for each cone segment can be de-
termined from Eq. (13).

The deflection influence coefficient matrix for their reas-
sembled shell can be determined from the matrix equation:

[6] = (D[] (B6)
where
511,- 5127 513;‘ 5141’ 0 0 0
Z_) _ 0 0 0 621]‘_,. 622,‘-n 6‘-’3j—n 5247'—”
[ ] - 631i 832] 633]’ 634]' 0 0 0 0
0 0 0 0 Oujn Osyon Ougjn  Ougy,

891

and

1 0 0 0 ]
X2jl XZiII Xzfm ijIV
0 0 i 0

[7] - X4fI X"in X‘*?'m X;,«“

X jg X iy, Xijony, D, ST,
0 1 0 0
X3f“"1 X3f_"n Xojony ‘Y31*"Iv

| O 0 0 1 B

and the deflection influence coefficient matrix, for the whole
reassembled shell being analyzed, is

011 012 O3 O

_ 521 622 623 624
1 =16 6n 6w o
641 642 543 644

(B7)

The reciprocal relation used for the individual cone [Eq.
(A10)], also applies to the deflection influence coefficients of
the whole reassembled shell.

Comparison of Stress Influence Coeflicients

It was brought to the authors’ attention that a tabulation
of stress influence coefficients had been published by Galletly
for several shells, Tables 4 and 5 show a comparison between
Galletly’s results and solutions for the same shells obtained by
the conical segment method. It can be seen that good agree-
ment was obtained.
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