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preliminary design, where the basic structural configurations
will be established.

Sandwich structures, of which the truss-core sandwich has
been selected as representative, are shown to be very effi-
cient load-carrying members for all loading-component com-
binations treated in this article, except as wide columns—
particularly at low to moderate values of the various loading
indexes.

Cross-rolled beryllium sheet is the most efficient material
for all configuration-loading-component combinations in-
vestigated, when elastically stressed in the lower temperature
range. In applications involving plastic stresses, beryllium
is competitive with the so-called high-strength materials.

The validity of small-deflection theory for predicting the
behavior of axially compressed, long, truss-core sandwich
circular cylindrical shells has been verified for a portion of
the practical design range by some independently conducted
tests. Further experimental verification of the theoretical
minimum weight analyses presented here is required, par-
ticularly for structures such as the axially compressed
cylinder, where controversy exists over the proper theory for
predicting their buckling behavior. Minimum weight studies
of other stiffened structural components, such as conical
shells and spherical caps, are needed. In addition, the
minimum weight of structures under combined loading is of
interest and should be determined.
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Conical Segment Method for Analyzing Open Crown Shells of
Revolution for Edge Loading

ROBERT R. MEYER* AND MARILYN B. HARMONf
Douglas Aircraft Company Inc., Santa Monica, Calif.

A solution, accurate, rapid, simple enough for design use, and valid for all regions, has been
obtained for the stress distribution and influence coefficients for a variable thickness shell of
revolution formed by a generator of arbitrary shape. The shell is subdivided into a series of
equivalent conical segments whose individual thicknesses are the local segment average. Con-
ditions of continuity then are applied at the boundaries of each conical segment to evaluate
the indeterminate edge shears and moments using digital equipment. Influence coefficient
comparisons for a wide range of shell geometries are made between the cone solution and
solutions by other methods from the literature and show agreement within 4%. The cone
solution reciprocity relations are shown to be valid to five significant figures. Limiting con-
ditions indicate that good approximations of the influence coefficients and the stresses can be
obtained by using 10 cones in most cases.

Nomenclature

E = modulus of elasticity
v — Poisson's ratio
i — thickness
Az = altitude of a, truncated conical segment
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R = radius of curvature of the median surface of the cone
measured in the truncating plane

a. — angle between the axis of revolution and the generatrix of
the conical segment

Xi — load or moment applied to an edge of a conical segment
dijc = deflection at i in the direction of load Xi due to a unit load

at k (displacement or rotation), influence coefficient
a = distance from the shell axis of rotation to the center of the

radius of curvature for a toroidal shell
b = maximum shell cross-section dimension, i.e., toroidal

radius or major axis of an ellipse
Qs = shear force on the meridian plane
Ns = normal force on the meridian plane
Ms = bending moment on the meridian plane
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Ne — normal force on the plane perpendicular to the meridian
plane (hoop)

Me — bending moment on the plane perpendicular to the merid-
ian plane (hoop)

Introduction

FOR many years investigators have directed their activities
toward solving the shell equations to obtain the edge solu-

tions for various shells of revolution.1- 7~9 Limiting sequences
used to obtain a solution can be defined in a variety of ways.
The sequence may be defined, for example, by a series, by a fi-
nite difference mesh, or by a numerical integration interval
where the mesh or interval subdivision defines the sequence.
In this paper, the sequence is defined by a cone subdivision.
The rapidity of approach to a limit in any case will depend
upon in which stage of the analysis the sequence is defined.
It is believed that the rapidity of the approach to a limit of the
conical solution presented here lies basically in the fact that
the sequence is defined at a later stage in the analysis than for
a finite difference grid or numerical integration interval where
magnification of the sensitivity to the interval may appear in
tl e c Hivergence of the final results.

The solution for any number of cones as proposed here can
be programmed for a digital computer. A simple input of
geometry and loading quickly will yield the deflection in-
fluence coefficient matrix and bending stress distribution for
use in thin shell design. The shell of revolution, formed by a
generator of arbitrary shape, can have any meridional thick-
ness variation, and it is possible to take into account a change
of material or material properties as the shell is traversed from
crown to base.

The original shell is considered to be a limiting sequence of
circular conical shell frustums that, when assembled together
with conditions of continuity satisfied, closely resemble the
original shell (Fig. 1). Each conical segment has constant
material properties and thickness, the average of the material
properties and the thickness variation in the original shell
region represented by that conical segment. Many short
cones are cut in regions of rapidly changing geometry or
material properties, whereas in less disturbed regions a few
cones will yield a satisfactory solution. The individual cone
solution is shown to be rigorously valid for all ranges of
opening angle from a cylinder to a flat plate (Appendix A).

Deflection Influence Coefficients

A comparison of the cone solution deflection influence co-
efficients with the deflection coefficients for toroids, ellipsoids,
and shells of negative curvature, derived by other methods,3"5

shows a maximum of 4% difference for the three numerical
examples given (Tables 1-3). This percentage range generally
held for other numerical examples compared with the fore-
mentioned literature sources.

Using the reciprocity relations [Appendix A, Eq. (A10)],
the check matrix dik (i,k = 1, 2, 3, 4) for 15 cones and E =
10 X 106 for the toroidal example yields the following values:

+0.00083963316
-0.00044246309
-0.000082054413
-0.000067329702

-0.00044246235
+0.0011778462
+0.000081082908
+0.00010251960

Similar matrix reciprocity checks for other numerical ex-
amples using the cone solution exhibit five digit accuracies
comparable to those shown here (i.e., 312 compared to 52i, etc.,
in the foregoing). The authors are not aware of any other
methods exhibiting comparable accuracies in the reciprocity
relations.

It is of interest to investigate the manner in which the de-
flection influence coefficients approach a limit as the number
of cones is increased. The main diagonal terms for the toroi-
dal example3 are shown in Fig. 2. The rapid approach of the

1 THE j-l CONE SEGMENT APPROXIMATION

A-A

Fig. 1 A toroidal shell illustrating the use of the cone
approximation

coefficients to limiting values suitable for design is typical for
the various shell geometries analyzed.

Stress Distributions

Comparison data for bending stress distributions of unpres-
surized shells were unavailable in the unclassified literature. J
It is of interest to note, however, the effect of the number of
cones used to approximate the shell upon the convergence of
the stress values to a limiting case resulting from a fine lumping
of cones. An example of an ellipsoidal shell using 20 cones as
the limiting case is shown in Fig. 3, which was typical of
comparisons made for other shell geometries.

12
NO. OF CONES

Fig. 2 The variation of the influence coefficient (nor-
malized to the 20-cone solution) for the toroidal shell3

example

-0.000082054375
+0.000081083109
+0.000013781843
+0.0000075269255

-0.000067329376
+0.00010251973
+0.0000075268471
+0.000013740710

Conclusions

Stress analysts have needed a rapid method of obtaining
good approximations of the influence coefficients and bending
stress distributions for edge-loaded shells for which exact
solutions are not available. The cone solution presented here,
using a computer such as the IBM 7090, quickly will yield in-

J See Appendix B.
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fluence coefficients and stresses for any thin shell of revolution
within design accuracy. The limiting cases of any governing
equations are the flat plate and the cylinder, thus permitting
the analysis of a wide range of shell geometries. Variable
thickness and variations of material can be included in the
analysis.

Individual Cone:

Appendix A
Derivation

The cone problem consists of solving a fourth-order dif-
ferential equation with four constants of integration for each
of the four different boundary conditions. Splitting the
fourth-order equation into a pair of second-order equations
(1), one obtains, using the notation defined by Fig. 1,

where

Lc(sQs)

#( • • • ) d(
^c — s —7^— ~r

= 0 (Al)

dS* dS S
Using the transformation 77 = aft)1'2 = 2X(i)1/2-(s)1/2, the
solution of the cone problem then depends upon the solution
of

dz(sQs) 1 d(sQs) -, («<2.) = 0drj* ' T] drj

This solution is given by1

sQs = d[ber x - (2/x)bei' x] + C2[bei x + (2/x*)berf x] +
C*[ker x - (2/x)keif x] + C,[kei x + (2/^^er' x] (A2)
where

^ = modulus of elasticity
v = Poisson's ratio
X4 = [12(1 - v*)/tz] cot2a

•x = 2XO)1/2

All the other desired quantities, M, N, and d, depend upon
various linear combinations of Eq. (2) and its derivatives, i.e.,
a suitable combination of the constants of integration. A
double subscript notation is adopted for the constants of
integration Cpk such that the first subscript p indicates a con-
stant of integration number p = 1, 2, 3, 4; and the second
subscript k, where k = I , 2, 3, 4, corresponds to the subscript
of one of the unit edge loads, Xk = 1, to identify the loading

85 90
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Fig. 3 Typical hoop load per inch distribution showing
the effect of the number of approximating cones

condition. To simplify the solution, the following combina-
tions of Kelvin functions will be defined :

Aix = ber x — (2/x)beif x
Blx = x bei' x - 2(1 - v)[bei x + (2/x)ber' x]
A2x = bei x + (2/x)ber' x

-B2x = x ber' x - 2(1 - v} [ber x - (2/x)bei' x]
ASx = ker x — (2/x)keif x
BSx = x kei' x - 2(1 - v)[kei x + (2/x)kerf x]
A±x — kei x + (2/x)kerf x

-B4x = x kerf x - 2(1 - v) (ker x - (2/x)keif x]

The solution for the shear resultant Qs then can be represented
by

(A3)

sQs = C1KA1 (A4)
Similarly, the solution for the meridian moment resultant is
given by

x*M,/2 = ClKBlx + C2KB2x

The boundary conditions are
Q8

cosa

Q*

K = 1

K = 2

K = 3

K = 4

X2 = 1 = -
cosa

(A5)

X2 = X, = X, = 0

i = X, = X, = 0

X, =

X, = 1 = M,
2 = X, = 0
% = X% = 0

If the values of Apx, Bpx at x = Xi, x^ are denoted by APi, Ap%
and BPi, BPz, the boundary conditions may be represented by
the following matrix:

A

£2

ri /"Y
1/13 \J\i

CM C&

'Si cosa 0
0 — 82 cosa
0 0
0 0

(A6)

In terms of the functions

Dix = bei x + (2/x)berf x
Elx = -xber' x + 2(1 + v)ber x -

— D2x = ber x — (2/x)bei' x
E2x = -xbei' x + 2(1 + v)bei x +
D3x = keix + (2/x) kerf x
EZx = -xkerf x + 2(1 + v)ker x -

— D±x = ker x — (2/x)keif x
E±x = -xkei' x + 2(1 + p)kei x +

+ v)beif x

+ v)ber' x

+ v)kei' x

+ v)kerf x
(A7)

The angle change of the tangents at the points of application
and in the directions of Z3 and X4 due to unit load at Xk are
given by

#A2<53)4/c = ClkDlx + C,kD2x + CskD3x + C,kD,x (A8)
where

K = £^/12(l - v2)

while the horizontal displacement of the cone boundary edges
at and in the direction of loads Xi and X^ due to unit load at
Xk are given by Hooke's law for middle surface deformation:

81,2* = 0 s (A9)
or

2#«5il2fc/sina tana = ClkElx + C2kE2x + CuEZx + C4*#4*
As a check on the computation of Eqs. (8) and (9), Betti's
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Table 1 Influence coefficients: a comparison of the cone solution with Galletly's3 and dark's3

positive curvature with constant thickness (a =

Unit

Unit

Unit

Unit

Unit

Unit

Unit

Unit

moment at

Edge loading

ft = 73 E8%4
E8U

inward horizontal force at ft =73° E82z
E8iz

moment at ft = 36° 10' E82Z

outward

moment at

E8n
horizontal force at ft = 36° 10' E8Zi

E8U
ft = 73° E8u

E8u
inward horizontal force at ft = 73° £/542

moment at

outward

jE/<>32

ft = 36°10' #543
E8w

horizontal force at ft = 36° 10' Ed^
E8SI

230 in., b
solutions

889

for a toroid with
= 34.625 in., t = 1.25 in.)

ft Galletly

73°
36°10'
73°
36°10'
73°
36°10'
73°
36°10'
73°
36°10'
73°
36°10'
73°
36°10'
73°
36°10'

1007
-695

+ 11545
-4554
+ 792
-834

-4343
8657

+ 134
+ 77.
1007
830

73
138

-664
-834

.0

.7

.0

.0

.4

.3

.0

.0

.2

.99

.0

.1

.95

.7

.0

.5

Clark

990
-680.

+ 11400
-4375.
+776,
-820

-4180,
8530.

+ 132.
+ 76.

4 cones

.0

.0

.0

.0

.0

.0

.0

.0
5

,2
987.0
811.

72.
137.

-646
-818

0
6
6

.0

.0

971 .49
-675.70

+ 11155
-4446.
+ 767.
-826.

-4232,

,6
.8
.88
.24
,6

8477.2
+ 130.
+ 74.
971.
806.

71.
137.

-643
-826

6
94
49
75
33
5
.14
.24

15 cones

975
-673

+ 11210
-4424
+771,
-820

-4211
8396.

+ 130.
+ 75,
975,
810

71.
137

-640
-820,

.80

.29

.9

.6

.76

.54

.4
3

,8
.27
.80
.83
.64
.8
.9
.54

Tahle 2 Influence coefficients: a comparison of the cone solution with Galletly's4 solution for a shell of negative Gaussian
curvature with constant thickness (6/t = 10, a/6 = 7)

Edge loading

bXi = 1
X, = 1

-bX2 = 1
-X, = 1
bXi = 1
X, = 1

-bX2 = 1
-X, = 1

ft Galletly

E6253i -2556.5
Ebz8m 7747.5

fti = 90° Eb28v 1271.8
Eb28u 2140.8
Eb*84l -1469.9

ft - 15° #62S43 1905.4
#62542 2084.5
Eb28u 9977.0

5 cones

-2585.5 Eb8n
7825 . 8 . Eb8u
1301.6 Eb8n
2138.4 Eb8u

- 1455 . 0 Eb82i
1903 . 2 E6523
2083 . 2 Eb822
9691.2 Eb82±

Galletly

1474.4
-2556.5
-471.72

-1651.4
-419.87
1132.0
1011.6
2084.5

5 cones

1480.3
-2585.5
-481.25

-1634.8
-428.34
1158.5
1042.9
2083 . 2

Table 3 Influence coefficients: a comparison of the cone solution with Galletly's5 solution of an ellipsoidal shell with
constant thickness (b/t = 100, b/z = 2)

Edge loading ft

—— X%/t = 1 jLv54

X4/Z2 = 1 #54
Xi/t = 1 (3i = 90 .c/§4

— Xs/t2 = 1 #54

— X%/t — 1 E8%
X±/tz = 1 Ed-»
Xi/t = 1 02 = 30° E8,

-Xz/t* = 1 Eh

Galletly

2 334.34
4 +85.349
i +4.9803
3 -0.68714
2 -10.420
4 -0.91900
ii -238.46
is 99 . 879

5 cones

333.37
+85.228
+4.9817
-0.68714

-10.416
-0.90903

-246.23
101.115

E/td22
E/tSu
E/t8n
E/t8zz
E/t&iz
E/t8u
E/t8n
E/tfa

Galletly

+ 2580.8
334.37
25.043

-7.8585
+33.181

6.6024
1232.1

-238.46

5 cones

+ 2576.55
333.38

25.467
-7.8737

+33.691
6.5904

1254.2
-246.23

reciprocal deflection theorem extended to line loads may be
represented in the form2

Cidik = Ckdki (A10)

where d is the circumference at the X* load, and dnc is the
deformation at i, at and in the direction of Xi = 1, due to a
unit load at k, i.e., Xk = 1. For the case considered, c\ — c%
= Si and 02 = c± = s2, since the circumference is proportional
to the slant height.

To complete the solution, the following quantities are de-
fined in terms of the Kelvin functions:

x ber' x — 2 ber x + (4:/x)beif x
x bei' x — 2 bei x — (4:/x)berf x
x ker' x — 2 ker x + (4:/x)keif x
x kei' x — 2 kei x — (4:/x)kerf x

(All)

and

Gix = x bei' x + 2(1 - v) [bei x + (2/x)ber' x]
-G2x = x ber' x + 2(1 - v) [ber x - (2/x)bei' x]

G*x = x kei' x + 2(1 - v) [kei x + (2/x)kerf x]
-ft* - x ker' x + 2(1 - v) [ker x - (2/x)keif x]

(A12)

tion^ for the stress resultants at point x are given by super-
position:

E xk E cpkApx
=l p=l

(A13)

When the Xk loads are unity or a given value, the final solu-

tana ^ 4
1\ e = — —~~ / j A & / j Op/cr px

2 4 4

X2 k = l p = l

2 4 4

Me = - Z Xk E CpkGpx

The values of stress resultants may be computed by means of
Eq. (13) for different values of x along the shell and must
satisfy the end conditions at the boundaries.

The method of coupling a series of cones together is shown
in Appendix B. The extent of the general application of the
conical-segment approximation to shells can be seen by ex-
amining the limiting cases of the cone equation, which are
those for a flat plate with a hole in the center for one limit and
that for a cylinder for the other limit.7
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Table 4 Stress influence coefficients: a comparison of the conical segment method solution with Galletly's solution10

for a torus

4>
M4>

= 90°

bNe
<*> = '

M0

75°

bNe
4> =

Mcj>
60°

bNe
* =

M0

45°

bNe
<f> = 30°

M0 bNe

Galletly's solution
bHi
Mi
bH2
M2

= 1
= 1 1.0
= 1
= 1

Conical segment method
bHi
Mi
bH2
M2

= 1
= 1 1.0
= 1
= 1

23.073
-132.75

-0.35630
-3.0529

solution
23.2066

-134.974
-0.35335
-2.9335

-0.03806
0.23789

-0.00191
-0.03837

-0.037487
0.23409

-0.00188
-0.037430

0.39219
26.705
0.49205
0.86552

0.32292
26.8922
0.48810
0.80105

-0.
-0.

0.
-0.

-0,
-0,

0
-0

00218
03541
01227
00148

.002053

.035588

.012127

. 00366

- 1 . 14090
8.0948
1.5166

21.518

- 1 . 1327
8.0657
1.52663

21.269

0.00124
-0.01414

0.04760
0.50433

0.001233
-0.013946

0.047511
0.49490

-0.13672
-0.69190
-3.5544
21.010

-0.13103
-0.71385
-3.5734
21.5588

0.
-1.

-18.
1.0 -212.

0.
-1.

-18,
1.0 -199,

22840
6827
228
01

,22614
6670

.441

.546

Table 5 Stress influence coefficients: a comparison of the conical segment method of solution with Galletly's solution10

for an ellipsoid

£ - 90° 4> =
M(j>/h2 Ne/h Mcj>/h2

H3/h
Ms/h2

H2/h
M2/h2

Galletly's

= I
= I
= 1
= 1
solution

1.0

Conical segment method
Hz/h
Mz/h2

H2/h
M2/h*

= 1
= 1
= i
= 1

0
1.0
0

-36.426
3.3236

-0.000399
-0.00757

solution
-36.400

3.3197
-0.0009489
-0.007618

_ 3
0
0,
0

-3
0.

-0.
0.

.0488

.38082

.00898

.00065

.0487
38015
008952
000649

75°

Ne/h
-3.7877
-0.56577

0.05742
0.01182

-3.7591
-0.5677

0.05828
0.01196

4> =
M<j>/h2

-0.41829
-0.02474
-0.07086
-0.01269

-0.41599
-0.02496
-0.07183
-0.01287

60°

Ne/h
2.2710

-0.33290
-0.05437

0.02752

2.2699
-0.3319
-0.05318

0.02757

0 = 45° 4» = 30°

M(j)/h2 Ne/h M<j>/h2 Ne/h

0.12705
-0.01528

0.20106
-0.03005

0.12618
-0.01512

0.20421
-0.02946

0.13478 . . .
0.02589 ...

-1.3283 ...
-0.28805 1.0

0.13182 . . .
0.02593 . . . .

-1.3524 ...
-0.2939 1.0

0.00317
-0.00764
22.589
3.1996

0.000917
-0.008053
22.926
3.2865

Flat Plate

The form of Eq. (1) holds for a meridian angle change 0,1
as well as for the shear force Qs; therefore, writing Eq. (1) in
terms of d>.

(AH)

For a flat plate, in the limit, a ->• Tr/2, cot a -> 0, and s -*• r,
the plate radius; the equation becomes

(d<f>/dr) - = 0 (A15)

which is the plate equation for a plate with zero transverse
shear.6

Cylinder

The cylinder is the limiting case where the apex of the cone
approaches infinity. Let S = Si + x, where Sit the distance
of the apex from the upper edge, -* «? } and x is the variable
dS = dx, and Eq. (14) becomes

dx

i [12(1 - z/Ol1 / 27 = 0 (A16)t
In the limit as a -+ 0, tana -> 0, but tana [(Si + x) ] -> a, the
cylindrical radius. Hence

a(d*<i>/dx*) ± i [12(1 - v*)]llz(<l>/t) = 0 (A17)
This is equivalent to the single equation

a*(d*<t>/dx*) + 12(1 - *>2)(</>A2) = 0 (A1S)

Since <£ = dw/dx, the meridian angle change,

d [d*w 12(1 - v2) I
T T~4 + ———^2—— w =
CiX \__CLX Qt t _J

(A19)

This is the equation of a cylinder.6

Appendix B

Coupling the Cones

The method of coupling the cones will be illustrated by
coupling the top conej to the next conej — 1 beneath it. For
continuity of the two cone segments, see Fig. 1 at the joint:

2y + Z,--i (Bl)

4; + X,,--, (B2)

8±ij + j + X^jdtfj + X
j_1 (B3)

(B4)

For the end cone, known external end loads are substituted
into the equations such that X^ = Mj and Xij = Pj. The
other cones are coupled in a similar manner, resulting in a
matrix equation from which the unknown edge loads X2 and
X4 can be determined for each cone. Using the general rela-
tions derived from Eqs. (Bl) and (B2), the unknown Xi and X3
loads can be evaluated from

The matrix solution for X2 and Z4 is of the form

[H]T(X^] = [Z5]
where for 2(j — 1) terms
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and

891

1X8} =

~— 82iy

-541,
0
0

0
0

0
0
0
0

«*', n

032j-n

— 523,-
— 543y

0
0

0
0

0
0
0
0

«i4y ,
534/J_

"Py
Pi
MiL^iJ

and

[H]r =
\J\
\J\

\C\,
\J\

\B\,

where

\A 822,-_, + ,,-. + 81.,-.-,:

- [S
The matrix unknown X2 and X4 loads are evaluated for the
unit load case where the known shell end loads XIJT, X3yIIi?
Xzj-n^, ^4/-«IV are equal to 1 or 0 each in turn. The form
of X2A is therefore

from which the unknown X2 and X4 and, therefore, JTi and X$
loads can be found for each cone. Using these evaluated
loads, the stress distribution for each cone segment can be de-
termined from Eq. (13).

The deflection influence coefficient matrix for their reas-
sembled shell can be determined from the matrix equation:

[5] = [D][E] (B6)
where

ID] =
0 0 0 0

&!/ fe/ $33,' 534,'
0 0 0 0

0

2i,
0

0

522y
0

0

624y_
0

1
XZil
0

0

_0

0
XtJn
0

1
0 '

0
*'/m1

0

0

0
X*iiv
0

0 '

1
and the deflection influence coefficient matrix, for the whole
reassembled shell being analyzed, is

[o] =
021 022 O23 "24 (B7)

The reciprocal relation used for the individual cone [Eq.
(A10) ], also applies to the deflection influence coefficients of
the whole reassembled shell.

Comparison of Stress Influence Coefficients

It was brought to the authors' attention that a tabulation
of stress influence coefficients had been published by Galletly10

for several shells. Tables 4 and 5 show a comparison between
Galletly's results and solutions for the same shells obtained by
the conical segment method. It can be seen that good agree-
ment was obtained.
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